
Advanced
Computer Architecture

Memory Hierarchy

• DRAM (Dynamic Random Access Memory):

– value is stored as a charge on capacitor that must be periodically
refreshed, which is why it is called dynamic

– very small – 1 transistor per bit – but factor of 5 to 10 slower than SRAM

– used for main memory

• SRAM (Static Random Access Memory):

– value is stored on a pair of inverting gates that will exist indefinitely as
long as there is power, which is why it is called static

– very fast but takes up more space than DRAM – 4 to 6 transistors per bit

– used for cache

DRAM vs. SRAM

3

Memory Hierarchy

• As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
1GB

300 cycles
Disk

80 GB
10M cycles

• Users want large and fast memories…

– expensive and they don’t like to pay…

• Make it seem like they have what they want…

– memory hierarchy

– hierarchy is inclusive, every level is subset of lower level

– performance depends on hit rates

Memory Hierarchy

Processor

Data are transferred

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance

from the CPU in

access time

Size of the memory at each level

Block of data
(unit of data copy)

Locality

• Locality is a principle that makes having a memory hierarchy a good
idea

• If an item is referenced then because of

– temporal locality: it will tend to be again referenced soon

– spatial locality: nearby items will tend to be referenced soon

Hit and Miss

• Focus on any two adjacent levels – called, upper (closer to CPU) and
lower (farther from CPU) – in the memory hierarchy, because each
block copy is always between two adjacent levels

• Terminology:
– block: minimum unit of data to move between levels

– hit: data requested is in upper level

– miss: data requested is not in upper level

– hit rate: fraction of memory accesses that are hits (i.e., found at upper
level)

– miss rate: fraction of memory accesses that are not hits
• miss rate = 1 – hit rate

– hit time: time to determine if the access is indeed a hit + time to access
and deliver the data from the upper level to the CPU

– miss penalty: time to determine if the access is a miss + time to replace
block at upper level with corresponding block at lower level + time to
deliver the block to the CPU

• Issues:

– how do we know if a data item is in the cache?

– if it is, how do we find it?

– if not, what do we do?

• Solution depends on cache addressing scheme…

• By simple example
– assume block size = one word of data

Caches Addressing Schemes

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Reference to Xn

causes miss so
it is fetched from
memory

• Addressing scheme in direct mapped cache:

– cache block address = memory block address mod cache size (unique)

– if cache size = 2m, cache address = lower m bits of n-bit memory address

– remaining upper n-m bits kept kept as tag bits at each cache block

– also need a valid bit to

recognize valid entry

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

0
0

0

Cache

Memory

0
0
1

0
1

0

0
1

1

1
0
0

1
0
1

1
1
0

1
1

1

Accessing Cache

• Example:

Index V Tag Data
000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Index V Tag Data
000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem(10110)

111 N

(0) Initial state: (1) Address referred 10110 (miss):

Index V Tag Data
000 N

001 N

010 Y 11 Mem(11010)

011 N

100 N

101 N

110 Y 10 Mem(10110)

111 N

(2) Address referred 11010 (miss):

Index V Tag Data
000 N

001 N

010 Y 11 Mem(11010)

011 N

100 N

101 N

110 Y 10 Mem(10110)

111 N

(3) Address referred 10110 (hit):

Index V Tag Data
000 N

001 N

010 Y 10 Mem(10010)

011 N

100 N

101 N

110 Y 10 Mem(10110)

111 N

(4) Address referred 10010 (miss):

to CPU

• In MIPS

Direct Mapped Cache
Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address showing bit positions

Cache with 1024 1-word blocks: byte offset
(least 2 significant bits) is ignored and
next 10 bits used to index into cache

• In MIPS

Direct Mapped Cache
Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address showing bit positions

Cache with 1024 1-word blocks: byte offset
(least 2 significant bits) is ignored and
next 10 bits used to index into cache

Cache Read Hit/Miss

• Cache read hit: no action needed

• Instruction cache read miss:
1. Send original PC value (current PC – 4, as PC has already been incremented

in first step of instruction cycle) to cache.

2. Instruct main memory to perform read and wait for memory to complete
access – stall on read

3. After read completes write cache entry

4. Restart instruction execution at first step to refetch instruction

• Data cache read miss:
1. Similar to instruction cache miss

2. To reduce data miss penalty allow processor to execute instructions while
waiting for the read to complete until the word is required – stall on use

• Write-through scheme
– on write hit: replace data in cache and memory with every write hit to

avoid inconsistency

– on write miss: write the word into cache and memory – obviously no
need to read missed word from memory!

– Write-through is slow because of always required memory write

• Write-back scheme
– write the data block only into the cache and write-back the block to main

only when it is replaced in cache

– more efficient than write-through, more complex to implement

Cache Write Hit/Miss

• Taking advantage of spatial locality with larger blocks:

Direct Mapped Cache: Taking
Advantage of Spatial Locality

Address (showing bit positions)

16 12 Byte

offset

V Tag Data

Hit Data

16 32

4K

entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Address showing bit positions

Cache with 4K 4-word blocks: byte offset (least 2 significant bits) is ignored, next 2 bits are
block offset, and the next 12 bits are used to index into cache

Direct Mapped vs Set Associative vs
Fully Associative Cache

1

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1

2
Tag

Data

Search

Fully associative
Direct Mapped 2-way Set Associative Fully Associative

Location of a memory block with address 12 in a cache with 8 blocks
with different degrees of associativity

12 mod 8 = 4 12 mod 4 = 0

• Direct mapped: one unique cache location for each memory block
– cache block address = memory block address mod cache size

• Fully associative: each memory block can locate anywhere in cache
– all cache entries are searched to locate block

• Set associative: each memory block can place in a unique set of cache
locations – if the set is of size n it is n-way set-associative
– cache set address = memory block address mod number of sets in cache

– all cache entries in the corresponding set are searched to locate block

• Increasing degree of associativity
– reduces miss rate

– increases hit time because of the search and then fetch

Direct Mapped vs Set Associative vs
Fully Associative Cache

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative

(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

One-way set associative

Direct Mapped vs Set Associative vs
Fully Associative Cache

Configurations of an 8-block cache with different degrees of associativity

Example Problems

• Find the number of misses for a cache with four 1-word blocks given the

following sequence of memory block accesses:

0, 8, 0, 6, 8

for each of the following cache configurations

1. direct mapped

2. 2-way set associative (use LRU replacement policy)

3. fully associative

Solution

• 1 (direct-mapped)

• 5 misses

Block address Cache block

0 0 (= 0 mod 4)

6 2 (= 6 mod 4)

8 0 (= 8 mod 4)

Address of memory Hit or Contents of cache blocks after reference

block accessed miss 0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Block address translation in direct-mapped cache

Cache contents after each reference – blue indicates new entry added

Solution (cont.)

• 2 (two-way set-associative)

• Four misses

Block address Cache set

0 0 (= 0 mod 2)

6 0 (= 6 mod 2)

8 0 (= 8 mod 2)

Address of memory Hit or Contents of cache blocks after reference

block accessed miss Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Block address translation in a two-way set-associative cache

Cache contents after each reference – blue indicates new entry added

Solution (cont.)

• 3 (fully associative)

• 3 misses

Address of memory Hit or Contents of cache blocks after reference

block accessed miss Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

Cache contents after each reference – blue indicates new entry added

Implementation of a Set-Associative
Cache

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Address

4-way set-associative cache with 4 comparators and one 4-to-1 multiplexor:
size of cache is 1K blocks = 256 sets * 4-block set size

Set

Multilevel Caches

• Add a second-level cache
– primary cache is on the same chip as the processor

– use SRAMs to add a second-level cache, sometimes
off-chip, between main memory and the first-level
cache

– if miss occurs in primary cache second-level cache is
accessed

– if data is found in second-level cache miss penalty is
access time of second-level cache which is much less
than main memory access time

– if miss occurs again at second-level then main memory
access is required and large miss penalty is incurred

Virtual Memory

• Virtual address space, i.e., space addressable
by a program is determined by ISA
– typically: main memory size disk size virtual

address space size

• Program can “pretend” it has main memory
of the size of the disk – which is smaller than
the virtual memory (= whole virtual address
space), but bigger than the actual physical
memory (=DRAM main memory)

Virtual Memory

• Page table (in software) transparently converts a
virtual memory address to a physical memory
address, if the data is already in main; if not, it
issues call to fetch the data from disk into main

• Virtual memory is organized in fixed-size (power of
2, typically at least 4 KB) blocks, called pages.
Physical memory is also considered a collection of
pages of the same size.
– the unit of data transfer between disk and physical

memory is a page

Virtual Memory

Physical addresses

Disk addresses

Virtual addresses

Address translation

Mapping of pages from a virtual address to a
physical address or disk address

Virtual Address Physical Address

Page

Main Memory

Virtual
Memory

Secondary Storage

Page Table Implements Virtual to
Physical Address Translation

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page table: page size 4 KB, virtual address space 4 GB,
physical memory 1 GB

Points to start
of page table

Page Faults

• Page fault: page is not in memory, must retrieve it
from disk
– enormous miss penalty = millions of cycles

– therefore, page size should be large (e.g., 32 or 64 KB)
• to make one trip to disk worth a lot

– reducing page faults is critical

Resolving Page Faults using the Page
Table to Access Disk

• There is a data structure, either part of or auxiliary to the page
table, which records where each virtual page is stored on disk
(cylinder, sector, block, etc.)

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page

number

Physical page or

disk address

Page table maps virtual page to
either physical page or disk page

Making Address Translation Fast
with the

Translation-lookaside Buffer
• A cache for address translations – translation-lookaside buffer (TLB):

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page

addressValid

TLB

1

1

1

1

0

1

Tag

Virtual page

number

Physical p
age

or disk address

Physical memory

Disk storage

On a page reference, first look up the virtual page number in the TLB; if
there is a TLB miss look up the page table; if miss again then true page fault

